THE UNIVERSITY OF ADELAIDE DEPARTMENT OF MECHANICAL ENGINEERING

EXAMINATION FOR THE DEGREE OF B.E.

4103: MACHINE DYNAMICS

NOVEMBER, 2000

TIME: 3 HOURS

[In addition, candidates are allowed ten minutes before the exam begins to read the paper.]

[The use of notes, textbooks and calculating devices is permitted in the examination room.]

Attempt ALL FOUR questions.

1. a) Determine the relation between cam angles β_1 , β_2 and lifts L_1 , L_2 to match a harmonic curve H-2 to an eighth-power polynomial curve P-2.

[10 marks]

b) If the total rise of 20 mm during the *H*-2 motion occurs over 60 degrees of cam rotation, determine the cam rotation required for the fall during the *P*-2 motion to be 10 mm.

[5 marks]

c) Figure 1 shows a configuration of four equal masses on a shaft. Find the magnitude and angle, relative to mass 1, of the masses required in planes X and Y to achieve balance. Assume all masses are at the same radius.

[10 marks]

Figure 1

2.

a) In the planetary gear train shown in Figure 2, determine the angular velocity ratio ω_2/ω_7 .

[20 marks]

b) Determine the input to output angular velocity ratio if the arm 4 is connected directly to the output shaft and gears 5, 6, and 7 are omitted.

[5 marks]

Figure 2

- 3. For the mechanism shown in Figure 3, assume that link 4 rolls on the frame (link 1) without sliding. You may also assume that Figure 3 is a scale drawing of the mechanism. If link 2 is rotating clockwise with a constant angular velocity of 10 rad/s, determine:
 - a) The angular velocity of links 3 and 4.

[5 marks]

b) The velocity of point E.

[3 marks]

c) The angular acceleration of links 3 and 4.

[12 marks]

d) The acceleration of point E.

[5 marks]

Compute the quantities graphically, and properly label all terms.

Figure 3

4. Find the external torque T_{12} that must be applied to link 2 of the mechanism shown in Figure 4 to drive it at $\omega_2 = 1,800$ rad/s anticlockwise and $\alpha_2 = 0$ rad/s². Link 2 is in a horizontal position, and it is balanced so that its centre of mass G_2 is at the pivot O_2 . The mechanism moves in the horizontal plane, and friction may be neglected. You may assume that Figure 4 is a scale diagram of the mechanism. Compute the quantities graphically, and properly label all terms.

[25 marks]

$$m_3 = 0.32 \text{ kg}, m_4 = 0.35 \text{ kg}, I_3 = 1.75 \times 10^{-3} \text{ kg.m}^2, I_4 = 1.25 \times 10^{-3} \text{ kg.m}^2$$

Figure 4