THE UNIVERSITY OF ADELAIDE DEPARTMENT OF MECHANICAL ENGINEERING

EXAMINATION FOR THE DEGREE OF B.E.

4103: MACHINE DYNAMICS

NOVEMBER, 2001

TIME: 3 HOURS & 10 MINUTES

[Students are advised to devote 10 minutes to reading the paper and planning their approach.]

[The use of notes, textbooks and calculating devices with the exception of laptop computers is permitted in the examination room.]

Attempt ALL FOUR questions [Total: 100 marks].

1. For the four-bar linkage shown in Figure 1, assume that the angular velocity of link 2 is 50 rad/s clockwise and that the angular acceleration of link 2 is 1600 rad/s² clockwise.

Assuming that the mechanism is exactly to scale, construct the velocity and acceleration polygons and compute the following graphically:

- a) the velocity of point B [1 mark]
- b) the velocity of point C [2 marks]
- c) the velocity of point E [3 marks]
- d) the angular velocity of link 3 [2 marks]
- e) the angular velocity of link 4 [2 marks]
- f) the angular acceleration of link 3 [5 marks]
- g) the angular acceleration of link 4 [5 marks]
- h) the acceleration of point E [5 marks]

Figure 1

2. A mechanism is shown in Figure 2. For one revolution of the arm in the direction shown, find the number of revolutions of gears 3, 4 and 5 and their directions of rotation. The gears are non-standard. The number of teeth on each gear is indicated in brackets.

[15 marks]

Figure 2

3. For the rigid rotor of Figure 3 shown with two masses m_1 and m_2 , determine the masses m_A and m_B in planes A-A and B-B, respectively, which put the rotor in dynamic balance for a rotor speed of 500 rpm.

[15 marks]

Determine also the angular positions of the balancing masses.

[10 marks]

Figure 3

4. In the mechanism shown in Figure 4, link 2 rotates at an angular velocity of 20 rad/s clockwise and angular acceleration of 140 rad/s² clockwise. Using a graphical solution, find the torque which must be applied to link 2 to maintain equilibrium. Link 2 is balanced so that its centre of mass is at the pivot point θ_2 . The centre of mass of link 3 is at A. The mechanism moves in the horizontal plane. Friction may be neglected.

Assume that the mechanism is drawn to scale.

[35 marks]

$$O_2A = CA = 100 \text{ mm}$$
 $m_3 = 0.74 \text{ kg}$ $I_{G2} = .00205 \text{ kg-s}^2\text{-m}$ $m_4 = 0.32 \text{ kg}$ $I_{G3} = .0062 \text{ kg-s}^2\text{-m}$

Figure 4