THE UNIVERSITY OF ADELAIDE DEPARTMENT OF MECHANICAL ENGINEERING

EXAMINATION FOR THE DEGREE OF B.E.

4103: MACHINE DYNAMICS

NOVEMBER, 1999

TIME: 3 HOURS

[In addition, candidates are allowed ten minutes before the exam begins to read the paper.]

[The use of notes, textbooks and calculating devices is permitted in the examination room.]

Attempt ALL FOUR questions.

- 1. By the analytical method determine the equations of unbalance of the reciprocating masses for the two-cylinder engine of Figure 1 in which the cranks are at 90 degrees.
 - a) Determine equations for the shaking force S and its moment C and the distance of its line of action z from cylinder 1 in terms of θ_I .

[20 marks]

b) Determine S, C and z for $\theta_I = -30$ degrees given that $MR\omega^2 = 8900$ N, R/L = 0.25 and a = 100 mm, where M is the total equivalent mass of the reciprocating parts for each cylinder, R is the crank radius, and L the connecting rod length.

[5 marks]

Figure 1

- 2. The angular velocity of link 2 of the mechanism shown in Figure 2 is 20 rad/s, and the angular acceleration is 100 rad/s² at the instant being considered.
 - a) Determine the linear velocity of point F.

[5 marks]

b) Determine the angular velocity of link 3.

[5 marks]

c) Determine the linear acceleration of point F.

[10 marks]

d) Determine the angular acceleration of link 3.

[5 marks]

Compute the quantities graphically, and properly label all terms.

Figure 2

3. Determine the force F_B given that point B has a constant velocity $v_B = 13$ m/s for the mechanism shown in Figure 3. The linkage is in the vertical plane. Include the effects of gravity, and assume no friction. The mass moment of inertia of link 3 is 0.03 kg.m², and the mass centre of link 3 is 300 mm from A.

[25 marks]

$$AB = 800 \text{ mm. } m_2 = 2 \text{ kg, } m_3 = 1 \text{ kg, and } m_4 = 3 \text{ kg.}$$

Sketch all vector polygons used to obtain the solution, and properly label all terms.

Figure 3

- 4. Figure 4 shows an epicyclic hoist in which the carrier 4 is integral with a sprocket wheel that carries the load chain. The sun gear 1 is keyed to a sprocket wheel that carries the hand chain. The number of teeth on each gear is shown in brackets.
 - a) Find the velocity ratio ω_1/ω_4 .

[10 marks]

b) Find the velocity ratio ω_4/ω_2 .

[5 marks]

c) If when viewed from the left-hand side of the hoist, ω_l is clockwise, does the load (which is on the segment of the load chain behind the sprocket wheel 4) rise or fall?

[5 marks]

d) What is the ideal mechanical advantage (ratio of chain speeds) of the hoist if the sprocket wheels have a ratio R/r = 2?

[5 marks]

Figure 4